Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)As part of our efforts in the chemistry of main group platforms that support anion sensing and transport, we are now reporting the synthesis of anitmony-based bidentate Lewis acids featuring the o -C 6 F 4 backbone. These compounds can be easily accessed by reaction of the newly synthesized o -C 6 F 4 (SbPh 2 ) 2 ( 5 ) with o -chloranil or octafluorophenanthra-9,10-quinone, affording the corresponding distiboranes 6 and 7 of general formula o -C 6 F 4 (SbPh 2 (diolate)) 2 with diolate = tetrachlorocatecholate for 6 and octafluorophenanthrene-9,10-diolate for 7 , respectively. While 6 is very poorly soluble, its octafluorophenanthrene-9,10-diolate analog 7 readily dissolves in CH 2 Cl 2 and undergoes swift conversion into the corresponding fluoride chelate complex [ 7 -μ 2 -F] − which has been isolated as a [ n Bu 4 N] + salt. The o -C 6 H 4 analog of 7 , referred to as 8 , has also been prepared. Although less Lewis acidic than 7 , 8 also forms a very stable fluoride chelate complex ([ 8 -μ 2 -F] − ). Altogether, our experiental results, coupled with computational analyses and fluoride anion affinity calculations, show that 7 and 8 are some of the strongest antimony-based fluoride anion chelators prepared to date. Another notable aspect of this work concerns the use of the octafluorophenanthrene-9,10-diolate ligand and its ablity to impart advantageous solubility and Lewis acidity properties.more » « less
-
Our interests in the chemistry of atypical main group Lewis acids have led us to devise strategies that augment the affinity of chalcogen-bond donors for anionic guests. In this study, we describe the oxidative methylation of diaryltellurides as one such strategy along with its application to the synthesis of [Mes(C 6 F 5 )TeMe] + and [(C 6 F 5 ) 2 TeMe] + starting from Mes(C 6 F 5 )Te and (C 6 F 5 ) 2 Te, respectively. These new telluronium cations have been evaluated for their ability to complex and transport chloride anions across phospholipid bilayers. These studies show that, when compared to their neutral Te( ii ) precursors, these Te( iv ) cations display both higher Lewis acidity and transport activity. The positive attributes of these telluronium cations, which originate from a lowering of the tellurium-centered σ* orbitals and a deepening of the associated σ-holes, demonstrate that the redox state of the main group element provides a convenient handle over its chalcogen-bonding properties.more » « less
An official website of the United States government
